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TEMPERATURE DISTRIBUTION AND HEAT-TRANSFER COEFFICIENT DURING

CONDENSATION OF STEAM ON A RECTANGULAR FIN
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The distribution of temperature with height and length of a rectangular
fin in the condensation of vapor has been found theoretically. The ef-
fectiveness of fins under different conditions is demonstrated.

In the condensation of pure steam, containing no
impurities, the process of heat transmission through
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Fig. 1. Tube element with
longitudinal finning.

the wall is limited, as a rule, by the cooling heat
transfer agent, water. This occurs in fact during
condensation of water vapor and vapors of other sub-
stances with comparatively large latent heat of vapor-
ization, high thermal conductivity, and low viscosity
in the liquid state. However, in a number of cases,
for example during the condensation of vapors of low-
boiling organic substances, whose physical properties
do not satisfy the above criteria, the intensity of heat
transfer on the vapor side is appreciably decreased.
Thus, the question of the desirability of developing
surfaces on the condensation side, by the application
of finning, is to be considered.

This paper solves the heat-conduction equation for
a rectangular fin considered as an element of a longi-
tudinally finned tube, under the conditions of film
condensation of the vapor.

We shall consider a vertically positioned plane
rectangular fin, located in a vapor medium at tem-
perature tg. The heat liberated by the vapor upon con-
densation at the fin surface is given out through the
base of the fin, which has a temperature ty which is
below tg (Fig. 1). We are required to find the distri-
bution of the temperature with fin height and length.

Solution of this problem is simplified if we neglect
the variation of temperature with thickness of the fin.

This assumption will be close to reality when the fin
thermal conductance is large and the fin thickness is
small. As a result we obtain a one-dimensional dif-
ferential equation for the propagation of heat over the
fin height:
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The boundary conditions in the most general case take
the form

for y=0 T=T,=f —1,

for y=h —A ————ZT =aT. (2)

w
Y

The value of the heat-transfer coefficient for fin
vapor condensation on a vertical plate cooled at its
root, which value must be substituted into Eq. (1) to
obtain a solution, depends entirely on the thickness
of the condensate film formed on the fin surface.

The problem of the runoff film thickness and of the
heat-transfer coefficient on a vertical wall with con-
stant temperature was examined by Nusselt. Under
conditions of steady laminar flow, neglecting inertia
and surface tension forces, he obtained the widely
known relation for the heat-transfer coefficient,

a= ?‘/ ___iY_Zl)_f__ . (3)
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An essential difference between conditions for con-
densation on a fin and the conditions of the Nusselt
problem is that the film thickness on the fin changes
not only along the length of the fin from top to bottom,
as on a plate, but also over the height of the fin, from
root to apex, because of temperature variation.

However, if we neglect the wall temperature vari-
ation along every imaginary vertical line of motion of
the film condensate, and neglect the mutual interaction
of neighboring liquid layers over the height of the fin
in a film moving with a different velocity, we can use
the Nusselt equation (3) and substitute it into the basic
equation (1).

Taking account of the above considerations, and
using the notation
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we reduce the equation of heat conduction over the fin
TEq. (1)] to the dimensionless form
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with the boundary conditions

for t=0 6=1,

no 0.7103" Y2 r'p (6)
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Thus, we have obtained a nonlinear second-order
differential equation. The coefficient m on the right
side of Eq. (5) contains two thermophysical properties
of the fin material and working substance in the liquid
phase, the geometrical dimensions of the fin, and a
variable height coordinate (0 = x = [).

Equation (5) can be reduced to first order by sub-
stituting d6/d¢ = p, and then the first integral is
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On the right of the new equation (7) we retain only
the "minus™" sign, since the sense of the problem re-
quires us to find a decreasing function.

The constant C; is determined from the boundary
conditions !6) at the fin apex

8
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where 6y = 0| =t
Separating the variables in Eq. (7)
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and expanding in a series the expression in brackets
on the left of Eq. (9) with respect to (7C;/8m)g§~7/4
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we can integrate Eq. (9) term by term. We note first
that series (10) converges in the region
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where ¢ = (7/8)(n?/m? = (7/8)(6/2h)% is a coefficient
depending on the fin dimensions.
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Fig. 2. Temperature distribution over
the height of a rectangular fin, for
various values of m.

Convergence of the series is restricted to the range
m < 2/¢. Since m ~ x~ 1/1, the parameter m begins to
increase noticeably for x — 0, i.e., at the top edge of
the fin, where the convergence of the series (10) also
may break down. Calculations carried out for various
variants of real surfaces and working substances in-
dicate that condition (11) is satisfied right up to x =
= 10"° m. In practice this means that the series (10)
converges over the whole range of values 0 = x =< 1.

After substituting series (10) into Eg. (9) and inte-
grating, we have
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We shall restrict ourselves to the first term of the
expansion on the left of Eq. (12), since the subsequent
terms are negligibly small. To this level of accuracy,
we find that C, = 8 (for ¢ =0 6 = 1).

Thus, the approximate equation obtained for the
temperature distribution across the fin is

8= (1—0.133VmEE, 0<m<56. (13)

It follows from the form of Eq. (13) that it satisfies
the physical sense of the problem only in a limited
range of values of the parameter m. (For m > 56, ac-
cording to Eq. (3), the fin wall temperature increases
with distance from the root.)

The graph of the function 6, shown in Fig. 2, gives
the temperature distribution over fin height for various
values of m. It can be seen that Eq. (18) covers rather
well the range of interest to us. For low values of m
(m = 1), which corresponds to poor heat transfer, the
temperature drop over the height of the fin is smooth
and the temperature curves approximate to horizontal
lines in the limit, corresponding to m = 0. Even for
m > 30, the main temperature drop occurs in the sec-
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tion (0.2—0.3), while the greater part of the fin prac-
tically plays no part in the condensation.

Fig. 3. Intermittent longi-
tudinal tube finning.

Thus, the most effective region, from economic
and technical considerations, is the region of values
of the parameter m = 1-10, for which the entire fin
surface operates with the greatest heat transfer.

Using the expression obtained {Eq. (13)] for the
temperature distribution over a fin during condensation
of the vapor, we determine the mean dimensionless
temperature gradient over the fin height,
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The amount of heat passing through the fin base is

dx =

£=0
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Finally, the mean heat-transfer coefficient over the
fin surface is

- Q
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The quantities Q and T appearing in Eq. (17) are de-
termined from Eqgs. (16) and (15), respectively.

The work performed, making use of the formulas
obtained, allows us to make a specific estimate of the
effectiveness of various kinds of longitudinal finning,
as a function of their operating conditions.

As an example, we consider the frequently used
finned aluminum tubes with @ 24/22, of height 1 m,
positioned vertically in condensers (Table 1).

A calculation of the fin efficiency was carried out
for the case of the condensation of two substances,
water and carbon tetrachloride, which differ markedly
in their thermophysical properties. We calculated the
heat transfer from a smooth tube by means of the Nus-
selt formula. Calculation of the heat transfer in the
case of a fin was carried out according to Eq. (13).

Table 1
. I(Od (1—0.133Vmy Geometrical Characteristics of Finned
0= E= T evm (14) Surfaces
’ | | ;_Number oc}'—
F— Fin - ick. | ins aroun:
From Eq. (14), taking into account Eq. (4), i.e., con- Type of surface %F'"l,‘,’l"“’h’ heign. f‘le"s:h,',f:,, the tube
sideringthat m ~ h% we can seethat § depends strongly | | ference’
on the fin height. 1.Lof{\gitudinally continuous ] [0 } 7 0.6 | 9
ns . ' .
The mean-integral temperature drop over the whole ! ) . . ] ‘
. 2. Longitudinally intermittent
fin area is fins (Fig. 3) 05 | 7 06 | 19
I
T = T Y Bde = 0.97, [ pr al + The results of the calculations, shown in Table 2,
! 9 a 9 allow us to conclude that in spite of the high thermal con-
ductance of the chosen (fin) materials, the considered
@lf L e g a_] ’ (15) fin shapes are not suitable for the condensation of water
7 a vapor, but they do have an appreciable effect on the
where condensation of the vapors of organic substances. This
is particularly noticeable for the second type of tube
4= 0133 T = 010038y * % 42 finning with distributed longitudinal fins, where the
- mxe wh B Ty 68% increase in weight of a finned tube in comparison
Table 2
Technical and Economic Data Relevant to the Fins*
1 i 2
. n H T
king | . , i LG Q G
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1 ___I ) 1 (] ) i i i) (] )
H;0 | 2950 a7 2 44 l 68 { 30 ; 59 { 68
CCl, 192 4.7 l 6.1 135 | 68 | 9.2 | 202 | 68
) ; i

* 1 and 2 denote the surface types (see Table 1).
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with 2 smooth tube leads to an increase of 200% inheat
transfer {without considering heat removed by the in-
tervening parts of the tube).

Thus, we have obtained an approximate solution fo
the problem of the temperature distribution with height
and length of a vertically positioned rectangular fin,
daring the condensation of an impurity~free vapor under
steady conditions and laminar condensate flow., Using
Eq. (13), we can answer thequestion of the desirability
of employing cooling surfaces with longitudinal fins in
condensers, of choosing the most efficient fin dimen~
sions, as indicated by the thermophysical character-
istics of the fin material and the condensing vapor, and
of caleulating the total heat-transfer coefficient.

NOTATION

%, yarethe fin length and height coordinates, respec-
tively; tg isthe vapor saturation temperature; by is the
finwall femperature; {;is the fin rootwall temperature;
h, I, 6, are the fin height, length, and thickness,
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respectively; T =tz — tw is the local temperature
drop between the vapor and the fin wall; u is the
perimeter of the fin sectiontakingpart inheat exchange
with the vapor; fis the fin cross sectional area; Aw
is the thermal conductivity of the fin; A; is the thermal
eonductivity of the liguid; y; is the dynamic viscosity
of the liguid; v is the weight of liquid per unit volume;
v is the heat of vaporization of the liquid; @ is the di-
mensionless temperature gradient at the fin; 0 is the
mean-integral dimensionless temperature gradient
over the fin height; T isthe mean-integral temperature
drop over the total fin area; Q is the amount of heat
passing through the fin base; Gg and Gy are the weight
of the smooth tube and the finning, respectively; Qg
and Qg are the heat given out by the smooth tube and
the finned tube, respectively.
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