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The distribution of temperature with height and length of a rectangular 
fin in the condensation of vapor has been found theoretically. The ef- 
fectiveness of fins under different conditions is demonstrated. 

In the condensat ion of pure s team,  containing no 
impur i t i e s ,  the p rocess  of heat t r a n s m i s s i o n  through 

ot V 

= h 

Is 
Fig.  1. Tube e lement  with 

longitudinal finning. 

the wall is l imited,  as a rule ,  by the cooling heat 
t r ans fe r  agent, water.  This occurs  in fact dur ing  
condensation of water vapor and vapors of other  sub-  
s tances  with compara t ive ly  la rge  latent  heat of vapor -  
ization, high thermal  conductivity,  and low viscosi ty  
in the liquid state.  However, in a number  of cases ,  
for example dur ing  the condensation of vapors of low- 
boil ing organic subs tances ,  whose physical  p roper t i es  
do not sat isfy  the above c r i t e r i a ,  the in tensi ty  of heat  
t r ans f e r  on the vapor side is appreciably decreased.  
Thus, the question of the des i rab i l i ty  of developing 
surfaces  on the condensat ion side, by the application 
of finning, is to be considered.  

This paper solves the heat-conduct ion equation for 
a rec tangular  fin cons idered  as an e lement  of a longi-  
tudinally finned tube, under  the condit ions of fi lm 
condensat ion of the vapor.  

We shall  consider  a ver t ica l ly  posit ioned plane 
rec tangu la r  fin, located in a vapor medium at t em-  
pe ra tu re  t s .  The heat  l ibera ted  by the vapor upon con- 
densat ion at the fin surface  is  given out through the 
base of the fin, which has a t empera tu re  to which is 
below t s (Fig. 1). We are required to find the d i s t r i -  
bution of the t empera tu re  with fin height and length. 

Solution of this problem is s implif ied if we neglect" 
the var ia t ion  of t empera ture  with thickness  of the fin. 

This  assumption will be close to rea l i ty  when the fin 
the rmal  conductance is la rge  and the fin thickness  is 
smal l .  As a r e su l t  we obtain a one-d imens iona l  dif-  
fe ren t ia l  equation for  the propagation of heat over  the 
fin height:  

dr/` 
a u T. (1) 

d y '  k~, f 

The boundary conditions in the most  genera l  case take 
the form 

for y = 0  T = To = t, - -  t o, 

d T  
for y = h  --k~, d y  = a T .  (2) 

The value of the h e a t - t r a n s f e r  coefficient  for  fin 
vapor  condensat ion on a ve r t i ca l  plate cooled at i t s  
root, which value mus t  be subst i tuted into Eq. (1) to 
obtain a solution, depends en t i re ly  on the thickness  
of the condensate f i lm formed on the fin surface.  

The problem of the runoff f i lm thickness and of the 
h e a t - t r a n s f e r  coefficient  on a ve r t i ca l  wall with con- 
s tant  t empera tu re  was examined by Nussel t .  Under 
condit ions of steady l a mi na r  flow, neglect ing ine r t i a  
and surface  tension forces ,  he obtained the widely 
known re la t ion  for  the h e a t - t r a n s f e r  coefficient,  

(3) 

An essent ia l  difference between conditions for con- 
densat ion on a fin and the condit ions of the Nussel t  
p roblem is that the f i lm thickness on the fin changes 
not only along the length of the fin f rom top to bottom, 
as on a plate, but also over the height of the fin, f rom 
root to apex, because of t empera tu re  var ia t ion .  

However, if we neglect  the wall t empera tu re  v a r i -  
ation along every  imag ina ry  ver t ica l  l ine of motion of 
the f i lm condensate,  and neglect  the mutual in teract ion 
of neighboring liquid l aye r s  over the height of the fin 
in a fi lm moving with a different  velocity,  we can use 
the Nussel t  equation (3) and subst i tute i t  into the basic  
equation (1). 

Taking account of the above considera t ions ,  and 
using the notation 

T y 
o = - - - ;  ~ . . . .  ; 

To h 
3:4 1:2 I / 4  2 0.71kt Yt  r uh  

m = - -  (4) p If'~4 )~I,'4~lT[,'4 , 
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we reduce the equation of heat conduction over the fin 

[Eq. (I)] to the dimensionless form 
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where r = (7/8)(n2/m 2) = (7/8)(5/2h) 2 is a coefficient 

depending on the fin dimensions. 

d ~ 0 
= m 0 3/4 (5) S 

d~ 2 

with the boundary conditions 

for ~ = 0  O= 1, 

dO for ~ =  1 - n03'4, 
d~ 

(~ 71,~ 3/4 /2 ~ /4 / ,  

n = "  . . . .  i YI - ,, (6) 
1/4 I / 4 ~  ~r~[/4 

Thus,  we have obtained a non l inea r  second-o rde r  
d i f ferent ia l  equation. The coefficient  m on the r ight  
side of Eq. (5) contains  two thermophysica l  p roper t i es  
of the fin ma te r i a l  and working substance  in the liquid 
phase,  the geometr ica l  d imens ions  of the fin, and a 
va r iab le  height coordinate  (0 ~ x _< l). 

Equation (5) can be reduced to f i r s t  o rde r  by sub-  
s t i tut ing d0/d~ = p, and then the f i r s t  in tegra l  is 

dO i /  8 7/4 d~ ~ - m 0  + C~. (7) 

On the r ight  of the new equation (7) we r e t a in  only 
the "minus" sign,  s ince the sense  of the problem r e -  
qu i res  us to find a dec reas ing  function. 

The constant  Ci is de te rmined  f rom the boundary 
condit ions (6) at the fin apex 

8 
C 1 = 1 "/2 0 6/4 - -  --~ m 0 TM h , ( 8 )  

where O h = 01 ~=l" 
Separat ing the va r i ab les  in Eq. (7) 

dO 
= - -  L07 V ~ d ~  (9) 

I 7C1 0-7/4 } 1/2 
07:8 ~ i 1 + 8m .... 

and expanding in a s e r i e s  the express ion  in brackets  
on the left of Eq. (9) with respec t  to (7C1/8m)0-7/4 

I 

) 7C~ 0_7/4 2 = 1 1 7Ca 0--7/4 JC 
1 + 8m 2 8m 

(io) 

- -7 .2  7.3 

2-4 \ ~ m  2-4.6 ~m ) 0 + . . . .  

we can in tegra te  Eq. (9) t e rm by t e rm.  We note f i r s t  
that s e r i e s  (10) converges  in the region  

n 2 06/~ - 8 m 0~/4 

2 m 87/4 
7 

4 7C1 0__7/4 
8m I =  

I 8 
n 2 - - ~ - f n  

7 

= ] , ~ m - l l  < 1, (ii) 4 

0.o 

o.6 

0.# 

Q2 
I 

o o .#  08 0.8 ~, 

Fig. 2. Te mpe r a t u r e  d is t r ibut ion  over 

0.2 

the height of a rec tangula r  fin, for 
var ious  values  of m. 

Convergence of the se r i e s  is r e s t r i c t ed  to the range 
m < 2 /~ .  Since m ~ x-i/4, the p a r a m e t e r  m begins to 
i nc r ea se  not iceably for x ~ 0, i .e. ,  at the top edge of 
the fin, where the convergence  of the se r i e s  (10) also 
may break down. Calculat ions  ca r r i ed  out for var ious  
va r i an t s  of rea l  sur faces  and working substances  in-  
dicate that condition (11) is sat isf ied r ight  up to x = 
= 10 -5 m. In prac t ice  this means  that the s e r i e s  (10) 
converges  over the whole range of values 0 -< x <__ I. 

After subst i tu t ing s e r i e s  (10) into Eq. (9) and in te-  
grat ing,  we have 

13 27 
801/s+0'30 8m7C1 0 s --0.111(-~--m ]7C1 ~20 8 + 

+ . . . . .  1.071/-E~ + A- (12) 

We shal l  r e s t r i c t  ourse lves  to the f i r s t  t e rm of the 
expansion on the left of Eq. (12), s ince  the subsequent  
t e r m s  are  negl igibly smal l .  To this level  of accuracy,  
we find that C2 = 8 (for ~ = 0 0 = 1). 

Thus,  the approximate equation obtained for  the 
t empera tu re  d is t r ibut ion  ac ross  the fin is  

0-(I-0.133V~) 8, 0~m~56. (13) 

It follows f rom the form of Eq. (13) that it sa t is f ies  
the physical  sense  of the problem only in a l imited 
range  of values  of the p a r a m e t e r  m. (For m > 56, ac-  
cording to Eq. (3), the fin wall t empera ture  i nc rea se s  
with dis tauce f rom the root. ) 

The graph of the function 0, shown in Fig. 2, gives 
the t empera tu re  d is t r ibut ion over fin height for var ious  
va lues  of m. It can be seen that Eq. (13) covers  ra the r  
well the range of i n t e re s t  to us. For  low values  of m 
(m _< 1), which cor responds  to poor heat t r ans fe r ,  the 
t empera tu re  drop over the height of the fin is smooth 
and the t empera tu re  curves  approximate to horizontal  
l ines in the l imi t ,  cor responding  to m = 0. Even for 
m > 30, the main  t empera tu re  drop occurs  in the see -  
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tion (0.2-0.3) ,  while the g rea t e r  par t  of the fin p r a c -  
t ical ly  plays no pa r t  in the condensation.  

Fig.  3. In te rmi t t en t  longi-  
tudinal tube finning. 

Thus, the most  effective region, f rom economic 
and technical  cons idera t ions ,  is the region of values 
of the pa rame te r  m = 1-10,  for which the en t i re  fin 
surface  operates  with the grea tes t  heat t r ans fe r .  

Using the express ion  obtained [Eq. (13)] for the 
t empera tu re  d is t r ibut ion  over  a fin dur ing  condensat ion 
of the vapor, we de te rmine  the mean d imens ion less  
t empera tu re  gradient  over  the fin height, 

l 

( 1 - -  0.133 W-~) 9 

" L 2 V ~  
(14) 

From Eq. (14), taking into account Eq. (4), i .e. ,  con-  
s ide r ing tha t  m ~ h 2, we can see that O depends s t rongly  
on the fin height. 

The mean- in t eg ra l  t empera tu re  drop over the whole 
fin a rea  is 

l T ).-= -/- dx = -a 9 8 + 
o 

l','8 H- a_] 
a2lr'S . . .  + aSP ~ - - a ' ~ l n  , (15) 

7 a 

3.s ,,4 rL.S ut.~ 
= O. l O k t  Y t  h 

+ 

where 

a = O. 133Vmx '.~ I/8 2 ,2 :8 ~t X~ f To 

The amount of heat  pass ing  through the fin base  is  

1 
Q =  ~ 6 T o  t ~ dO 

--  h .j  ~ .:=odx= 
o 

~--- 1.")o ! A,') ~'!a3'/8~' 1i2w ~]ll'4 r 1/8 Zor, s 17/8 fi I/2 
(16) 

~tl/8 

Final ly ,  the mean h e a t - t r a n s f e r  coefficient over the 
fin sur face  is 

~ =  Q (17) 

The quantities Q and T appearing in Eq. (17) are de- 
termined from Eqs. (16) and (15), respectively. 

The work performed, making use of the formulas 
obtained, allows us to make a specific estimate of the 
effectiveness of various kinds of longitudinal finning, 
as a function of their operating conditions. 

As an example, we consider the frequently used 
finned aluminum tubes with 0 24/22, of height 1 m, 
positioned vertically in condensers (Table 1). 

A calculation of the fin efficiency was carried out 
for the case of the condensation of two substances, 
water and carbon tetrachloride, which differ markedly 
in their thermophysical properties. We calculated the 
heat transfer from a smooth tube by means of the Nus- 
selt formula. Calculation of the heat transfer in the 
case of a fin was carried out according to Eq. (13). 

Table 1 

Geometrical Characteristics of Finned 
Surfaces 

I Number of 

~ n g t ,  hei Type of surface i F 1 h [ Fin t.m . . . . .  tmc•-iIfinsat~ tube 

ference ; 
I 

1. Longitudinally continuous ] 

fins intermittent 1.0 2. Longitudinally 
fins (Fig. 3) 0 .05 

7 0 .6  

7 0 .6  

I2 

12 

The resu l t s  of the calculat ions ,  shown in Table 2, 
allow us to conclude that in spite of the high thermal  con-  
ductance of the chosen (fin) mate r i a l s ,  the considered 
fin shapes a re  not sui table  for the condensat ion of water  
vapor ,  but they do have an appreciable  effect on the 
condensat ion of the vapors  of organic substances .  This 
is pa r t i cu la r ly  not iceable  for the second type of tube 
f inning with dis t r ibuted longitudinal  f ins,  where the 
68% inc rease  in weight of a f inned tube in compar i son  

Table 2 

Technical  and Economic Data Relevant  to the Fins* 

i 

Working r, - 
substance kJ/kg 

H20 I 2250 
CC14 192 

Qs, 
kW 

,t7 

4 .7  

Qf 100. 
Qf'  Qs 
kW % 

21 44 
6.1 135 

Gf I00, 
6s 

% 

68 

68 

of. _oLtoo. 
Qs kW % 

3O 59 

9 .2  202 

_GLloo, 
6s  

% 

68 

68 

I 1 and 2 denote the surface types (see Table 1). 
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with a smooth tube leads to an increase of 200% inheat 
transfer (without considering heat removed by the in- 
tervening parts of the tube). 

Thus, we have obtained an approximate solution to 
the problem of the temperature distribution with height 
and length of a verticaIly positioned rectangular fin, 
during the condensation of an impuri ty-free vapor under 
steady conditions and laminar condensate flow. Using 
Eq. (13), we can answer thequestionof thedesirabili ty 
of employing cooling surfaces with longitudinal fins in 
condensers~ of choosing the most efficient fir, dimen- 
sions, as indicated by the thermophysicat charac ter -  
istics of the fin material  and the condensing vapor, and 
of calc~a.ting the total heat- transfer  coefficient. 

NOTATION 

x, y are  the fla length and height coordinates, respec-  
tively; t s is the vapor saturation temperature;  tw is the 
finwaI1 temperature; to is the fin rootwall  temperature; 
h, l, 5, are the fin height, length, and thickness, 

respectively; T = t s - tw is the local temperature 
drop between the vapor and the fin wall; u is the 
per imeter  of the fin section takingpart in heat exchange 
with the vapor ;  f i s  the fin cross  sectional area; Xw 
is the thermal conductivity of the fin; hi is the thermal 
co-~lductivity of the liquid; ~l is the dynamic viscosity 
of the Iiquid; 7~ is the weight of liquid per  unit volume; 
r is the heat of vaporization of the liquid; 0 is the di- 
mensionless temperature gradient at the fin; ~ i s  the 
mean-integral  dimensionless temperature gradient 
over the fin height; T is the meaa-integraltempexature 
drop over the total fin area; Q is the amount of heat 
passing through the fin base; G s and Gf are the weight 
of the smooth tube and the fi .n.ntng, respectively; Qs 
and Qf are the heat given out by the smooth tube and 
the finned tube, respectively. 
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